РД-107/108 РД-109/119 РД-111 РД-114/115 РД-170/171 РД-180 Предыстория Хронология создания Общие сведения Описание конструкции Пневмогидравлическая схема Описание Работа двигателя Камера Узел качания ТНА Турбина Насос окислителя БНАО БНАГ Газогенератор Ампула с пусковым горючим Пусковой бачок Контейнер Галерея Использованные источники РД-253/275 РД-270 Ресурсы Сайт НПО Энергомаш Патенты НПО Энергомаш РД-180 на сайте P & W РД-180 на Astronautix.com РД-180 на SpaceAndTech |
LPRE.DE announces the release of a new version of Rocket Propulsion Analysis (RPA),
a free tool for analysis of liquid propellant rocket engines.
ЖРД РД-180В начале 1996г проект двигателя РД-180 НПО Энергомаш был признан победителем конкурса на разработку и поставку двигателя первой ступени для модернизированной РН "Атлас" американской компании Локхид Мартин. Это двухкамерный двигатель с дожиганием окислительного генераторного газа, с управлением вектором тяги благодаря качания каждой камеры в двух плоскостях, с возможностью обеспечения глубокого дросселирования тяги двигателя в полете. Данная конструкция базируется на хорошо проверенных конструкциях узлов и элементов двигателей РД-170/171. Создание мощного двигателя первой ступени осуществлено в сжатые сроки, а отработка – на малом количестве материальной части. Подписав контракт на разработку двигателя летом 1996 г., уже в ноябре 1996 г. было проведено первое огневое испытание двигателя-прототипа, а в апреле 1997 г. – огневое испытание штатного двигателя. В 1997-1998 гг успешно проведена серия огневых испытаний двигателя в составе ступени РН в США. Весной 1999 г. завершена сертификация двигателя для использования в составе РН "Атлас 3". Летом 2001г была завершена сертификация двигателя для использования в составе РН "Атлас 5".
13 января 1996 г. - НПО “Энергомаш” объявлено победителем конкурса на разработку ЖРД для модернизированной РН «Атлас IIAR » компании Локхид Мартин (США).
5 июня 1996 г. - НПО "Энергомаш" и фирма "Pratt&Whitney" подписали контракт о совместной разработке и изготовлении опытных образцов, испытании и сертификации нового российского бустерного двигателя РД-180. 14 июля 1996 года данный контракт вступил в силу после получения одобрения соответствующих правительственных ведомств Российской Федерации.
15 ноября 1996 г. - проведено первое огневое испытание ЖРД РД-180, разрабатываемого для первой ступени американской РН "Атлас IIAR", на стенде НПО “Энергомаш” в Химках.
29 июля 1998 г. - проведено первое огневое испытание ЖРД РД-180 в составе ступени РН "Атлас III" компании Локхид Мартин на стенде Центра Маршалла в Хантсвилле, США.
2 января 1999 г. - первый серийный двигатель РД-180 отправлен в США.
31 марта 1999 г. - завершение сертификационных испытаний ЖРД РД-180.
24 мая 2000 г. - первый пуск РН "Атлас 3А" с двигателем РД-180.
2001 г. - проведены сертификационные испытания РД-180 для использования в составе РН "Атлас 5".
2002 г. - проведены сертификационные испытания РД-180 для использования в тяжелом варианте РН "Атлас 5".
21 февраля 2002 г. - первый пуск РН "Атлас 3В" с двигателем РД-180.
21 августа 2002 г. - первый пуск РН "Атлас 5" с двигателем РД-180.
27 сентября 2002 г. - подписано лицензионное соглашение на экспорт в США полного комплекта конструкторской, технологической и испытательной документации по двигателю РД 180.
4 декабря 2002 г. - получены лицензии на экспорт полного комплекта технической документации на двигатель РД 180 по лицензионному соглашению.
Двигатель выполнен по замкнутой схеме с дожиганием окислительного генераторного газа после турбины.
Двигатель состоит из двух камер, турбонасосного агрегата (ТНА), бустерного насосного агрегата горючего (БНАГ), бустерного насосного агрегата окислителя (БНАО), газогенератора, блока управления автоматикой, блока баллонов, системы приводов автоматики (СПА), системы рулевых приводов (СРП), регулятора расхода горючего в газогенераторе, дросселя окислителя, дросселя горючего, пуско-отсечных клапанов окислителя и горючего, двух ампул с пусковым горючим, пускового бачка, рамы двигателя, донного экрана, датчиков системы аварийной защиты, теплообменника для подогрева гелия на наддув бака окислителя. При создании двигателя РД-180 в связи с уменьшением вдвое расхода компонентов топлива по сравнению с прототипом РД-170 необходимо было перепроектировать ТHA и ряд агрегатов автоматики. По первоначальной оценке унификация двигателей РД-180 и РД-170 составляла 70…75 %. Однако в процессе отработки двигателя РД-180 по техническому заданию "Локхид Мартин" были найдены более совершенные, нежели примененные в двигателе РД-170, конструкторские решения по ряду агрегатов, в том числе изменена конструкция направляющего аппарата насосов, улучшены условия работы подшипников ТНА, увеличен к.п.д. агрегатов подачи, разработан новый подбаковый разделительный клапан. Кроме того, фланцевая конструкция газогенератора заменена сварной, а схема двигателя упрощена. В связи с этими работами степень унификации двигателей РД-180 и РД-170 существенно снизилась. По существу, двигатель РД-180 является новой разработкой с использованием в качестве базового варианта двигателя РД-170.
Двигатель содержит содержит две камеры сгорания 1, турбонасосный агрегат 2, состоящий из турбины 3, двухступенчатого насоса горючего 4 и одноступенчатого насоса окислителя 5, газогенератор 6, бустерный насос горючего 7, приводом которого является гидравлическая турбина 8, и бустерный насос окислителя 9, приводом которого является газовая турбина 10. Бустерный насос окислителя (БНАО) 9 через трубопровод 11 соединен со входом насоса окислителя 5, выход которого через пускоотсечной клапан 12 соединен с коллекторной полостью 13 смесительной головки 14 газогенератора 6. На входе БНАО установлен фильтр окислителя. Бустерный насос горючего (БНАГ) 7 через трубопровод 15 соединен со входом первой ступени 16 насоса горючего 4. Первая ступень насоса горючего 16 соединена со входом второй ступени 17 насоса горючего и через трубопровод 18, в котором установлен дроссель 19 с электроприводом 20, соединена с коллектором 21 камеры сгорания 1, из которого горючее распределяется по каналам 22 регенеративного охлаждения камеры сгорания 1. На входе БНАГ установлен фильтр горючего. Каналы 22 регенеративного охлаждения сопла 23 через коллектор 24 соединены с пускоотсечным клапаном 25. Выход этого клапана соединен с коллектором 26, размещенным на цилиндрической части камеры сгорания. Выход коллектора 26 через регенеративные каналы 27 охлаждения цилиндрической части камеры сгорания соединен с полостью горючего 28 смесительной головки 29 камеры сгорания 1. Вторая ступень 17 насоса горючего 4 (через который проходит 20% от общего расхода горючего) через трубопровод 30 соединена с основным входом 31 регулятора тяги 32, управляемого электроприводом 33 и имеющим на входе обратный клапан 34. Выход 35 регулятора тяги 32 соединен с ампулой 36, заполненной пусковым горючим триэтилалюминием Аl(С2Н5)з. Выходы из этих ампул через пускоотсечные клапаны 37 соединены с полостью горючего 38 смесительной головки 39 газогенератора 6. Выход газогенераторов 40 соединен с турбиной 3, выход которой через трубопроводы 41 соединен с полостью 42 смесительных головок 29 камер сгорания 1. Кроме того, выход из турбины 3 через трубопровод 43, в котором установлен теплообменник 44 и клапан давления 45, соединен с коллектором турбины 46 привода бустерного насоса 9 окислителя. Пневмогидравлическая схема ЖРД содержит также систему запуска, которая включает пусковой бачок 47 с разделительной мембраной 48, патрубок 49 подвода газа высокого давления и выходной патрубок 50. Выходной патрубок 50 пускового бачка 47 через заправочный клапан 51 соединен с трубопроводом 15 подвода горючего от бустерного насоса горючего 7. Кроме того, выходной патрубок 50 с одной стороны через трубопровод 52, в котором установлен обратный клапан 53, соединен со вторым входом 54 регулятора тяги 32, через который осуществляется запуск двигателя, а с другой стороны - через обратный клапан 55 - соединен с ампулой 56, заполненной пусковым горючим триэтилалюминием Аl(С2Н5)з, выход которой через клапан 57 соединен с магистралью 58 подвода пускового горючего к форсункам зажигания 59 камеры сгорания. В магистрали 58 установлен жиклер 60, обеспечивающий дозированную подачу пускового горючего к форсункам зажигания. Для уменьшения импульса последействия пускоотсечные клапаны горючего установлены между охлаждающими трактами сопла и камеры сгорания (клапаны 25), а также перед коллектором второго и третьего поясов завес.
Пневмоклапаны приводятся в действие гелием от блока баллонов высокого давления с помощью электроклапанов.
При запуске двигателя производится наддув бачка 47 и вытеснение из него горючего, давление которого прорывает мембраны (не показаны) пусковых ампул 36 и 56. Одновременно производится открытие пускоотсечных клапанов 12 и 37 и 25 соответственно. В результате пусковое горючее из ампул 36 и 56 под действием давления, создаваемого пусковым бачком, поступает в газогенератор (через открытый клапан 37) и камеры (через обратные клапаны 57). Пусковое горючее, поступающее в газогенератор, воспламеняется с кислородом, также поступающим в газогенератор за счет предпускового наддува баков ракеты и гидростатического напора в них. Горючее, пройдя по охлаждаемому тракту камер сгорания, через фиксированное время поступает в смесительные головки камер сгорания 1. В течение этого времени задержки, в газогенераторе успевает начаться процесс горения и вырабатываемый генераторный газ раскручивает турбину 3 ТНА 2. После турбины окислительный газ поступает по двум охлаждаемым газоводам 41 в смесительные головки 29 двух камер сгорания, где воспламеняется с пусковым горючим, поступающим из форсунок зажигания 59 и впоследствии дожигается с поступающим в камеры горючим. Время поступления обоих компонентов в камеры сгорания подобрано так, что ТНА 2 успевает выйти на рабочий режим, пока в камерах 1 еще не установилось противодавление. По мере роста давления за насосом горючего 17 пусковой бачок 47 автоматически выключается из работы посредством закрытия обратных клапанов 53 и 55, а питание горючим газогенератора 6 переключается на насос 17 за счет программного открытия дросселя регулятора тяги 32. Часть окислительного газа с выхода турбины отбирается на привод двухступенчатой газовой турбины 10 бустерного преднасоса 9. Этот газ, проходя через теплообменник 44, нагревает газ, идущий на наддув баков ракеты. После турбины 10 газ сбрасывается в выходной коллектор 11, где он смешивается с основным потоком окислителя и конденсируется. Использование газа, отбираемого с выхода турбины ТНА, в качестве рабочего тела привода турбины бустерного насоса окислителя позволяет уменьшить температуру в газогенераторе и соответственно снизить мощность турбины ТНА. Часть горючего с выхода насоса 4 поступает на привод одноступенчатой гидравлической турбины 8 бустерного насоса горючего 7. Небольшая часть жидкого кислорода отбирается из коллекторов газогенераторов и поступает в охлаждающий тракт корпуса турбины и газоводов. На всем этапе запуска двигателя производится программное управление открытием дросселя регулятора тяги 32 и дросселя горючего 19 из положений начальной установки в положения, соответствующие номинальному режиму двигателя с помощью соответствующих приводов 33 и 20. Таким образом осуществляется плавный запуск двигателя с выходом на основной режим через 3 секунды. Перед выключением двигатели переводятся на режим конечной ступени, составляющий 50% от номинального.
Камера представляет собой паяно-сварной неразъемный узел и состоит из смесительной головки, камеры сгорания и сопла. Крепление камеры к газовому тракту осуществляется при помощи фланцевого соединения.
Таблица 2. Технические параметры камеры
Корпус камеры состоит из камеры сгорания и сопла. Корпус камеры включает в себя наружнюю силовую оболочку 11 и внутреннюю огневую стенку 13 с фрезерованными каналами, образующими тракт наружного регенеративного охлаждения камеры, имеющий три входа охладителя. Первый вход сообщен с трактом охлаждения критического сечения сопла, второй вход сообщен с трактом охлаждения выходной части сопла, а третий - с трактом охлаждения камеры сгорания. При этом первый выход сообщен с третьим входом, а первый вход, второй вход и подвод к двум нижним поясам щелевых завес объединены общим патрубком, разветвленным и размещенным снаружи камеры. Внутреннее охлаждение обеспечивается тремя поясами щелевых завес в докритической части камеры сгорания. Через них на стенку подается около 2% горючего в виде пленок, испаряющихся и защищающих ее от тепловых потоков, которые в критическом сечении сопла достигают величин порядка 50 МВт/м2. Cредства воспламенения выполнены из четырех равнорасположенных по окружности струйных форсунок 6, установленных за передним (огневым) днищем 3 в силовом корпусе камеры 11. Оси расходных отверстий струйных форсунок расположены под острым углом к выходу из силового корпуса и отклонены по кругу в поперечной плоскости от продольной оси силового корпуса в одинаковом направлении, причем ось расходного отверстия каждой струйной форсунки является скрещивающейся по отношению к осям расходных отверстий соседних с ней форсунок. Форсунки гидравлически объединены общим коллектором. Все форсунки - двухкомпонентные с осевым подводом окислительного газа и тангенциальным подводом горючего. Форсунки, расположенные около огневой (внутренней) стенки камеры, выполнены с увеличенным гидросопротивлением по линии горючего по сравнению с другими форсунками за счет уменьшения диаметров отверстий подвода горючего, т.е. обеспечивающими уменьшенный расход горючего по сравнению с другими форсунками.
Для подавления пульсаций давления начальная зона смесеобразования и горения, в которой, как правило, зарождаются высокочастотные колебания, разделена на семь примерно одинаковых объемов с помощью антипульсационных перегородок, состоящих из выступающих за огневое днище форсунок, которые неплотно прилегают друг к другу по своим цилиндрическим образующим. Благодаря этому резко повышаются собственные частоты колебаний в объемах между перегородками, смещаясь далеко от резонансных частот конструкции камеры сгорания. Кроме того, выступающие форсунки растягивают зону горения, что также уменьшает возможность возникновения высокочастотных явлений. Зазоры между неплотно прилегающими друг к другу выступающими форсунками оказывают дополнительное демпфирующее влияние. Выступающая за огневое днище часть форсунки охлаждается горючим, проходящим по спиральным каналам (шнековому завихрителю) 6 внутренней втулки.
Остальные форсунки заглублены в огневое днище (их выходные полости 4 выходят в конические расточки 5 в огневом днище 7) и выполнены с
различным гидросопротивлением при подводе горючего с разделением по массовому расходу горючего на три группы с возможностью обеспечения
разницы расходов горючего между каждой группой от 3% до 10% на номинальном режиме. При этом форсунки (кроме расположенных около огневой
стенки камеры) закреплены в огневом днище и среднем днище так, чтобы между собой соседствовали форсунки из различных групп
путем циклического последовательного спирального повторения расположения форсунок с первой до последней группы.
Каждая из двух камер снабжена узлом качания. Сила тяги передается от камеры на силовую раму через карданный подвес. Подвод сработавшего на турбине генераторного газа в КС осуществляется через 12-слойный составной сильфон, размещенный внутри карданного подвеса. Сильфон бронирован специальными кольцами и охлаждается небольшим количеством холодного кислорода, протекающего между внутренней поверхностью сильфона и тонкой внутренней стенкой.
Сильфон 13 выполнен многослойным и снабжен защитными кольцами 21, вставленными между гофрами 22 сильфона 13. Снаружи защитных колец 21 установлен плотно прилегающий к ним кожух 23, выполненный из слоев цилиндрических спиралей 24, соединенных концами с опорными кольцами 9 и 10 сильфонного узла. Смежные слои спиралей прилегают друг к другу, а их витки навиты в противоположных направлениях. Установка металлического силового кожуха в виде металлической цилиндрической спирали снаружи защитных колец 21 сильфона 13 повышает его прочностные свойства и в то же время ограничивает самопроизвольный изгиб сильфона 13 при повороте камеры двигателя на сравнительно большие углы (10-12°), тем самым повышая его устойчивость. Турбонасосный агрегат выполнен по одновальной схеме и состоит из осевой одноступенчатой реактивной турбины, одноступенчатого шнекоцентробежного насоса окислителя и двухступенчатого шнекоцентробежного насоса горючего (вторая ступень используется для подачи части горючего в газогенераторы).
На основном валу с турбиной находится насос окислителя, соосно с которым на другом валу расположены две ступени насоса горючего. Валы насосов окислителя и горючего соединены зубчатой рессорой для разгрузки вала от температурных деформаций, возникающих вследствии большой разницы температур рабрчих тел насосов, а также для предотвращения замерзания горючго. Для защиты радиально-упорных подшипников валов от чрезмерных нагрузок применены эффективные авторазгрузочные устройства. Турбина - осевая одноступенчатая реактивная. Для предотвращения возгорания из-за поломок элементов конструкции или трения вращающихся деталей о неподвижные (вследствие выборки зазоров от деформаций или наклепа на сопрягаемых поверхностях от вибрации) зазор между лопатками соплового аппарата и ротора сделан относительно большим, а кромок лопаток - относительно толстыми. Чтобы исключить возгорание и разрушение деталей газового тракта турбины, в конструкции применены никелевые сплавы, включая жаропрочные для горячих газовых магистралей. Статор и выхлопной тракт турбины принудительно охлаждаются холодным кислородом. В местах малых радиальных или торцевых зазоров используются разного рода теплозащитные покрытия (никелевые для лопаток ротора и статора, металлокерамического для ротора), а также серебряные или бронзовые элементы, исключающие возгорание даже при возможном касании вращающихся и неподвижных деталей турбонасосного агрегата. Для уменьшения размеров и массы посторонних частиц, могущих привести к возгоранию в газовом тракте турбины, на входе в двигатель установлен фильтр с ячейкой 0.16х0.16 мм. Высокое давление жидкого кислорода и, как следствие, повышенная орпсность возгорания обусловили конструктивные особенности насоса окислителя. Так, вместо плавающих уплотнительных колец на буртах крыльчатки (обычно используемых на менее мощных ТНА) применены неподвижные щелевые уплотнения с серебряной накладкой, поскольку процесс "всплывания" колец сопровождается трением в местах контакта крыльчатки с корпусом и может привести к возгоранию насоса. Шнек, крыльчатка и торовый отвод нуждаются в особенно тщательном профилировании, а ротор в целом - в особых мерах по обеспечению динамической сбалансированности в процессе работы. В противонм случае вследствие больших пульсаций и вибраций происходят разрушения трубопроводов, возгорания в стыках вследствие взаимного перемещения деталей, трения и наклепа. Для предотвращения возгорания из-за поломок элементов конструкции (шнека, крыльчатки и лопаток направляющего аппарата) в условиях динамического нагружения с последующим возгоранием из-за затирания обломков использованы такие средства, как повышение конструктивного совершенства и прочности за счет геометрии, материалов и чистоты отработки, а также введение новых технологий: изостатическое прессирования литых заготовок, применение гранульной технологии и другие виды.
Бустерный насос окислителя состоит из высоконапорного шнека и двухступенчатой газовой турбины, привод которой осуществляется окислительным газом, отбираемом после основной турбины с последующим перепуском его на вход в основной насос.
При работе БНАО на вход насоса подается жидкий кислород (показано стрелкой), а продукты сгорания с избытком кислорода, отбираемые из газовода после турбины основного ТНА (см. ПГС на рис. 2), подаются на вход турбины (показано стрелкой). Продукты сгорания далее попадают на профилированные лопатки 17 турбины, обеспечивая подачу жидкого кислорода шнеком 7. За турбиной продукты сгорания через отверстия 19 попадают в полость патрубка 20, а затем через отверстия 21 на выход насоса, где происходит их смешивание с жидким кислородом и конденсация. Для решения проблемы возникновения низкочастотных пульсации при конденсации газа применено дроблении потока, сбрасывающего газ. Разгрузка шнека 7 от действий осевых сил обеспечивается подачей жидкого кислорода высокого давления (см. рис. 2.2) через канал высокого давления 10 в полость высокого давления авторазгрузочного устройства. В месте малого зазора между рабочим колесом и корпусом в полости высокого давления авторазгрузочного устройства используется серебряная накладка, предтаращающая возгорание при возможном касании. В магистрали подвода продуктов сгорания к турбине БНАО установлен клапан "горячего газа" (45 на рис.2.1), работающий в условиях кислородного генераторного газа с высокой температурой и при высоком давлении.
Бустерный насос горючего состоит из высоконапорного шнека и одноступенчатой гидравлической турбины, работающей на керосине, отбираемом после основного насоса. Конструктивно бустерный насос горючего аналогичен бустерному насосу окислителя со следующими отличиями:
Однозонный газогенератор, вырабатывающий газ с избытком окислителя для привода турбины, состоит из корпуса паяно-сварной конструкции со сферообразной внешней оболочкой и жестко связанным с ней выходным патрубоком, цилиндрической огневой камерой диаметром 300 мм и смесительной головки, оснащеной двухкомпонентными и двухкаскадными по окислителю форсунками, конструкция которых выполнена с зоной горения и зоной балластировки газа внутри форсунок. Фактически каждая форсунка образует вместе с каналом толстостенного огневого днища, в котором она расположена, индивидуальный двухзонный газогенератор. В результате обеспечивается равномерность температурного поля по поперечному сечению общего газового потока, формируемого такими форсунками, при высокой расходонапряженности.
При работе газогенератора горючее из патрубка 17 заполняет полость 18 и подается через калиброванные каналы 23 и тангенциальные отверстия 25 в каналы 14 и далее в смесительные камеры 16. Окислитель через патрубок 19 подвается в кольцевую полость 9, через окна 20 заполняет полость 7. Часть окислителя через тангенциальные отвертия 21 попадает в смесительную камеру 16, где, смешиваясь с горючим, вызывает его возгорание. Через пазы 22 окислитель также подается в камеру 6, обеспечивая смешивание высокотемпературных продуктов сгорания. Далее в огневой камере 11 происходит охлаждение высокотемпературных продуктов сгорания с одновременным испарением жидкого и нагревом газообразного окислителя. На выходе из газогенератора к продуктам газогенерации подмешивается окислитель, подаваемый через кольцевую щель 30. Газогенератор обеспечивает на выходе окислительный газ в широком диапазоне температур (от 190 до 600°С), что позволяет регулировать тягу двигателя от 40 до 105% номинала. В отличие от прототипа (РД-170), в котором соединение корпуса и смесительной головки осуществляется при помощи разъемного фланца, в РД-180 применено сварное соединения корпуса и смесительной головки. Однако на этапе отработки широко применялись серийные агрегаты от РД-171, что можно увидеть на некоторых опубликованных фотографиях. Для обеспечения приемлемого уровеня температурных напряжений в несущих корпусных деталях, газоводы между газогенераторами, турбиной и камерами охлаждаются кислородом. Для предотвращения возгорания в газоводах, узлах качания смесительной головки камеры, клапане окислителя установлены повышенные (по сравнению с менее мощными двигателями) требования чистоты газовых трактов и недопущение наличия органических веществ.
В конструкцию введено средство для заправки корпуса пусковым горючим 6, которое установлено в перегородке 17 корпуса 1 и состоит из двух заглушек - заправочной заглушки 18 и сливной заглушки 19, которые установлены соответственно в заправочном 20 и сливном 21 каналах. Каждая из заглушек имеет резьбовую пробку 22, герметизирующую пробку 23, уплотнительную прокладку 24 и гайку 25. Резьбовая пробка 22 имеет расходное отверстие 26. Заправка ампулы пусковым горючим осуществляется следующим образом. На собранной ампуле до установки гаек 25 и герметизирующих пробок 23 не до конца ввертывают резьбовые пробки 22, таким образом, чтобы обеспечивалось открытие проходного сечения заправочного 20 и сливного 21 каналов через отверстие 26. Производят заправку пусковым топливом, подавая его через заправочный канал 20 во внутреннюю полость корпуса 1 между мембранными узлами 4 и 5, а затем через сливной канал на слив. После окончания заправки ампулы ввертывают до упора резьбовые пробки 22, после чего сливают пусковое горючее перед резьбовой пробкой 22 заправочной заглушки 18 и после резьбовой пробки 22 сливной заглушки 19. После этого устанавливают герметизирующие пробки 23, уплотнительные прокладки 24 и гайки 25. После этого ампула готова к установке на ракетный двигатель. Во внутренней полости ампулы в корпусе 1 между мембранами 8 образуется газовая подушка в результате сборки и заправки ампулы. Наличие газовой подушки способствует обеспечению надежности ампулы при хранении и эффективному движению с ускорением поршня 8 при подаче давления среды на вход ампулы. Устройство работает следующим образом. При воздействии компонента высокого давления со стороны входа на мембранный узел 4 происходит деформация мембраны 8, а потом и разрушение по окружности D. При неравномерном разрушении мембраны 8, с появлением негерметичности, давление перед поршнем 7 не падает, благодаря работе дросселирующей щели, образованной направляющей корпуса 9 и поршнем 7, поршень 7 продолжает двигаться, а после полного разрушения мембраны 8 он разгоняется. Движение поршня 7 с ускорением обеспечивается в связи с наличием усилия от перепада давлений, действующих на площадь поверхности, определяемую диаметром D. Длина "А", на которой поршень двигается с ускорением и зазор между поршнем 7 и направляющей 9 выбраны такими, чтобы обеспечить гарантированное срезание мембраны 8 по всему периметру, требуемую задержку раскрытия проходного сечения магистрали после среза мембраны 8, разгон поршня 7, необходимый для срабатывания пружинного фиксатора 13. Размеры перемычек мембран 8 определяется исхода из заданного давления, обеспечивающего разрушение перемычки. Далее, перемещающийся хвостовик 10 вдоль по потоку фиксируется с помощью пружинного фиксатора 13, при этом гидравлические характеристики открытого мембранного узла 4 воспроизводятся с высокой точностью, так как в потоке компонента отсутствуют элементы конструкции с неопределенным положением. После открытия мембранного узла 4 за счет возросшего давления пускового горючего аналогичным образом открывается мембранный узел 5. Пусковой бачок предназначен для создания давления, требуемого для прорыва мембран ампул с пусковым горючим.
Пусковой бачок содержит силовую оболочку 1, выполненную в форме полусферы, и трубчатый фланец 2, сопряженный на своем торце с торцом силовой оболочки 1. Трубчатый фланец 2 расположен вдоль продольной оси упомянутой полусферы силовой оболочки 1 и на его внутренней поверхности выполнена кольцевая канавка 3. Штуцер 4 для заправки и выдачи жидкости установлен в силовой оболочке 1. Прижимное кольцо 5 расположено соосно продольной оси силовой оболочки 1. Эластичная диафрагма 6 закреплена между трубчатым фланцем 2 и прижимным кольцом 5 и выполнена в форме полусферы, сопряженной с цилиндром, на наружной поверхности в основании которого выполнен концевой выступ 7, размещенный в кольцевой канавке 3 трубчатого фланца 2. Наружная поверхность прижимного кольца 5 и внутренняя поверхность трубчатого фланца 2 в месте размещения концевого выступа 7 в кольцевой канавке 3 выполнены цилиндрическими. Устройство имеет днище 8, выполненное в форме части сферы, с возможностью воздействия его торца на торец прижимного кольца 5 и герметичного соединения с трубчатым фланцем 2 силовой оболочки 1. Штуцер 9 для подвода управляющего газа установлен в днище 8. В конструкцию введено тонкостенное кольцо 10, на котором выполнен бурт 11 и которое установлено между прижимным кольцом 5 и эластичной диафрагмой 6 в месте расположения ее кольцевого выступа 7. Рассекатель 16 выполнен в виде пластины, перфорированной отверстиями 21, края которой прикреплены к внутренней поверхности днища 8 в полости 14, соединенной со штуцером 9 для подвода управляющего газа. Рассекатель 16 с отверстиями 21 служит для равномерного воздействия потока газа на эластичную диафрагму 6. Работает устройство следующим образом (см. также раздел работа ПГС). Через штуцер 4 происходит заполнение бачка основным горючим, при этом происходит перекладка эластичной диафрагмы 6 на днище 8. Затем подается управляющий газ через штуцер 9, под действием которого диафрагма 6 перекладывается в исходное положение, вытесняя основное горючее через штуцер 4. Благодаря принятой конструкции узла крепления концевого участка эластичной диафрагмы при высоком давлении обеспечивается герметичность при многоразовых перекладках (более 450), и обеспечивается возможность перегиба эластичной оболочки практически без ее растяжения.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||